Geomorfología de Movimientos en Masa

1. Términos Comunes

En el lenguaje común y técnico, existe una variedad de términos para describir los procesos de inestabilidad de laderas:

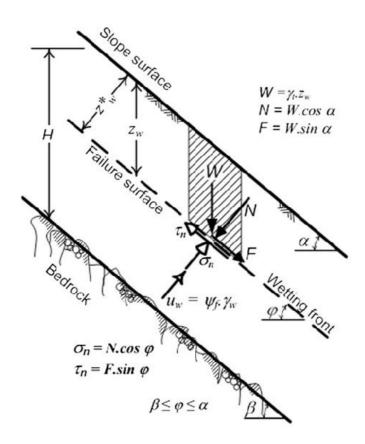
- Movimiento en Masa (Mass Movement): Es el término geomorfológico y técnico más inclusivo. Describe cualquier movimiento de suelo, detritos o roca pendiente abajo, principalmente bajo la influencia de la gravedad.
- **Deslizamiento (Landslide):** Es el término más popular y a menudo se usa como sinónimo de "movimiento en masa". Sin embargo, en la clasificación de Varnes (1978), "deslizamiento" se refiere a un tipo específico de movimiento (Slide) donde una masa se desplaza sobre una superficie de falla definida.
- **Proceso de Ladera (Slope Process):** Un término aún más amplio que incluye la reptación (creep) y la erosión superficial.
- **Derrumbe:** Término popular en español, usualmente reservado para **Caídas (Falls)**, que son movimientos extremadamente rápidos y desprendimientos de bloques.
- Alud: A menudo se asocia con flujos rápidos de nieve, pero también se usa para flujos de detritos (ej. alud torrencial).

Definiciones de Movimientos en Masa

- Varnes (1978) (Enfoque de Ingeniería): "El movimiento pendiente abajo de una masa de suelo, roca o detritos... cuando el esfuerzo cortante supera la resistencia al cortante del material". Esta definición es la base de la clasificación moderna y pone el énfasis en el balance de fuerzas.
- Scheidegger (1975) (Enfoque Geomorfológico): Define los movimientos en masa como parte del proceso general de denudación del paisaje. Se enfoca en el transporte de material por gravedad como un agente escultor del relieve.
- Soeters y Van Westen (1996) (Enfoque de Amenaza): En el contexto de la evaluación de amenazas, los definen como el resultado de las condiciones naturales del terreno, tales como geomorfología, hidrología y geología, y las modificaciones de estas condiciones por procesos geodinámicos, vegetación, usos del suelo y actividades humanas. Dichas modificaciones activan movimientos lentos, generalmente imperceptibles debido a que las propiedades mecánicas del material o condiciones de equilibrio decrecen gradualmente, y posteriormente, factores como precipitación, sismicidad o cortes de origen antrópico detonan dichos movimientos lentos en rápidos movimientos en masa.

3. Concepto de Estabilidad de Ladera (Geotecnia)

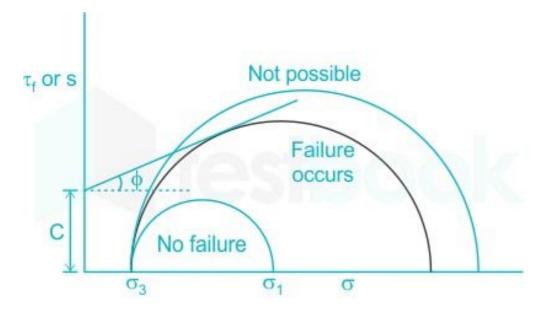
El análisis de estabilidad cuantifica la relación entre las fuerzas que impulsan el movimiento (resistencia) y las que se resisten a él (fuerzas).


Factor de Seguridad (FS)

Es el concepto central. Es la relación entre la resistencia al cortante disponible (\$\tau_f\$) y los esfuerzos cortantes (\$\tau\$) que actúan sobre una superficie de falla potencial.

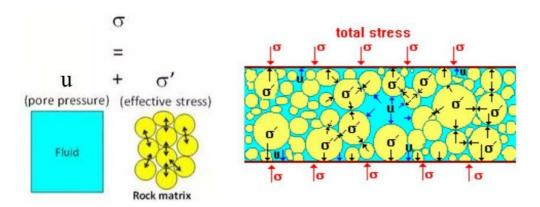
 $FS = \frac{\text{Essistentes}}{\text{Essuerzo Cortante}}$

- FS > 1: La ladera es estable.
- FS = 1: La ladera está en equilibrio límite (falla inminente).
- FS < 1: La ladera es inestable y fallará.


.

Resistencia al Cortante (\$\tau_f\$)

Es la resistencia interna del material a fallar por cizalla. Se describe por el **Criterio de Falla de Mohr-Coulomb**:


\$\tau_f = c' + \sigma_n' \tan(\phi')\$\$

- \$c'\$ (Cohesión Efectiva): La "pegajosidad" o resistencia intrínseca del material, independiente del esfuerzo normal. Es alta en arcillas consolidadas o rocas cementadas.
- \$\phi'\$ (Ángulo de Fricción Interna Efectivo): Representa la fricción entre las partículas del suelo o la roca.
- \$\sigma_n'\$ (Esfuerzo Normal Efectivo): El esfuerzo que realmente mantiene unidas las partículas.

Esfuerzo Efectivo y Presión de Poros

El concepto de esfuerzo efectivo (Terzaghi) es la clave para entender la inestabilidad.

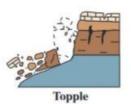
- Esfuerzo Normal Total (\$\sigma_n\$): El peso total (sólidos + agua) por unidad de área que actúa perpendicular a la superficie de falla.
- **Presión de Poros (\$u\$):** La presión del agua en los poros del suelo. Esta presión actúa "empujando" las partículas y separándolas, contrarrestando el esfuerzo normal.
- Esfuerzo Normal Efectivo (\$\sigma_n'\$): Es el esfuerzo total menos la presión de poros: \$\sigma_n' = \sigma_n u\$. Este es el esfuerzo que controla la resistencia al cortante.

¿Por qué fallan las laderas?

- Por Lluvia (Aumento de Presión de Poros):
 - 1. La lluvia intensa se infiltra en el suelo.
 - 2. El nivel freático sube, aumentando la presión de poros (\$u\$).
 - 3. Al aumentar \$u\$, el esfuerzo efectivo (\$\sigma_n'\$) disminuye drásticamente.
 - 4. Al disminuir \$\sigma n'\$, la resistencia al cortante (\$\tau f\$) colapsa.

- 5. El \$FS\$ cae por debajo de 1.
- Por Sismos (Aumento de Esfuerzos Cortantes):
 - 1. La aceleración sísmica introduce un nuevo esfuerzo cortante cíclico (\$\tau_s\$) en la ladera.
 - 2. Este esfuerzo se suma al esfuerzo cortante gravitacional, aumentando las "Fuerzas Impulsoras".
 - 3. En suelos granulares saturados, el sismo también puede causar **licuefacción**, que es un aumento súbito de la presión de poros (\$u\$), llevando la resistencia a cero.

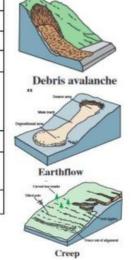
4. Variables Condicionantes y Detonantes


- Variables Condicionantes: Son las características estáticas o de largo plazo que hacen que una ladera sea susceptible a fallar. Responden al "Por qué aquí".
 - *Ejemplos:* Pendiente del terreno, geología (rocas débiles, fallas), uso del suelo (deforestación), aspecto (orientación de la ladera), geometría de la ladera (curvatura).
- Variables Detonantes (Disparadores): Son los eventos dinámicos y de corta duración que inician el movimiento. Responden al "Por qué ahora".
 - *Ejemplos:* Lluvias intensas o prolongadas (el detonante más común en climas tropicales), sismos, actividad humana (cortes en la base, sobrecarga en la corona), erupciones volcánicas (sismicidad, sobrecarga de ceniza, lahares).


5. Clasificación de Cruden y Varnes (1996)

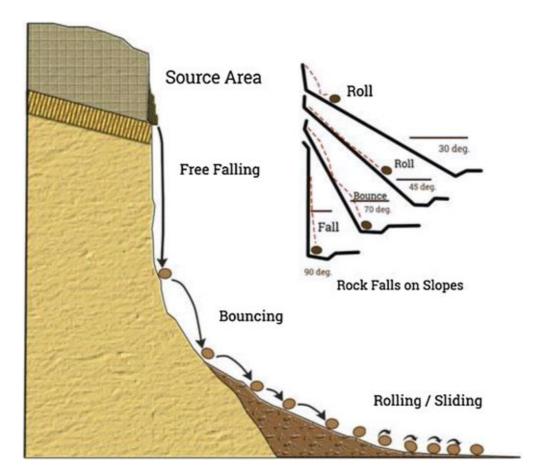
Es la clasificación más utilizada a nivel mundial. Se basa en dos criterios fundamentales:

- 1. Tipo de Material:
 - Roca (Rock): Material intacto y consolidado.
 - **Detritos (Debris):** Material grueso no consolidado (suelos de grano grueso, coluvión).
 - Tierra (Earth): Material fino no consolidado (suelos de grano fino, arcillas, limos).
- 2. **Tipo de Movimiento (Cinemática):** Se describen en la siguiente sección.

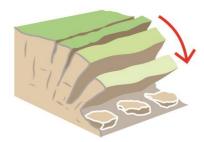


Lateral spre

TYPE OF MOVEMENT FALLS		TYPE OF MATERIAL		
		BEDROCK Rock fall	ENGINEERING SOILS	
			Predominantly coarse Debris fall	Predominantly fine Earth fall
SLIDES	ROTATIONAL		Debris slide	Earth slide
	TRANSLATIONAL	Rock slide		
LATERAL SPREADS		Rock spread	Debris spread	Earth spread
FLOWS COMPLEX		Rock flow (deep creep)	Debris flow (soil	Earth flow
		Combination of two or more principal types of movement		

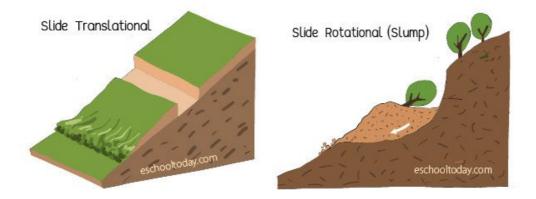


Debris flow

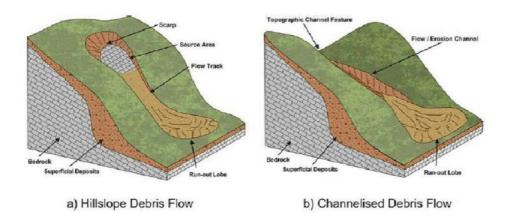

Tipo de Movimiento	Roca (Rock)	Detritos (Debris)	Tierra (Earth)
Caída (Fall)	Caída de Rocas	Caída de Detritos	Caída de Tierra
Volcamiento (Topple)	Volcamiento de Rocas	Volcamiento de Detritos	Volcamiento de Tierra
Deslizamiento (Slide)	Desliz. de Rocas	Desliz. de Detritos	Desliz. de Tierra
Flujo (Flow)	(Flujo de Rocas)	Flujo de Detritos	Flujo de Tierra
Propagación (Spread)	Propag. de Rocas	Propag. de Detritos	Propag. de Tierra
Complejo (Complex)	\multicolumn{3} {c	}{Combinación de los anteriores (ej. Deslizamiento-Flujo)}	

6. Tipos de Movimiento (Cinemática)

- Caídas (Falls): Desprendimiento de material de un talud casi vertical. El movimiento es predominantemente por el aire (caída libre, rebote, rodamiento). Son extremadamente rápidos.
 - Geoforma resultante: Talud o cono de derrubios.

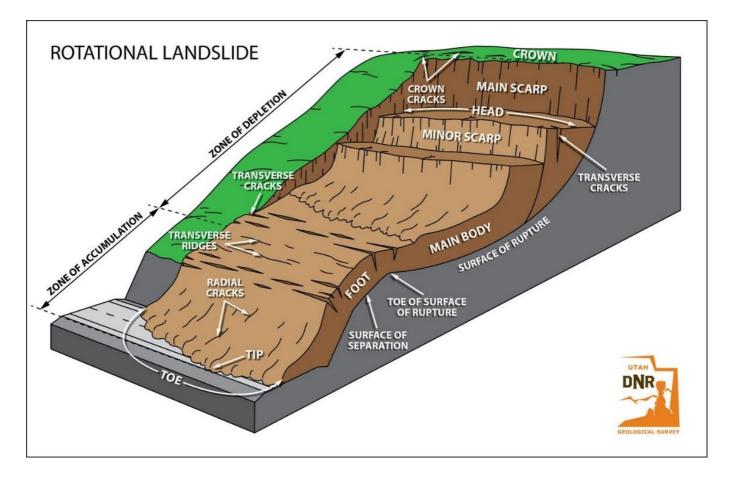


• **Volcamiento (Topples):** Rotación hacia adelante de una masa de roca o detritos alrededor de un punto de pivote en la base. Ocurre en macizos con discontinuidades (diaclasas, estratos) que buzan fuertemente hacia adentro de la ladera.



Rock topple

- **Deslizamiento (Slides):** Movimiento de cizalla de una masa coherente a lo largo de una o varias superficies de ruptura definidas.
 - **Deslizamiento Rotacional:** La superficie de falla es cóncava (forma de cuchara). El movimiento rota alrededor de un eje. Típico de materiales homogéneos como suelos residuales (saprolito) o arcillas.
 - **Deslizamiento Traslacional:** La superficie de falla es plana o ligeramente ondulada. El movimiento sigue discontinuidades geológicas (estratos, fallas, diaclasas).


- **Flujo (Flows):** Movimiento internamente deformado, similar al de un fluido viscoso. Las partículas se mueven a diferentes velocidades dentro de la masa.
 - **Flujo de Detritos (Debris Flow):** Un flujo rápido y canalizado de una mezcla de agua y detritos. Son comunes en cuencas de alta pendiente (Quebradas) y son altamente destructivos.
 - **Flujo de Tierra (Earth Flow):** Típicos en materiales arcillosos, más lentos, a menudo con una cabecera rotacional y un lóbulo estrecho (forma de reloj de arena).
 - **Reptación (Creep):** El flujo imperceptiblemente lento del suelo. Evidenciado por árboles inclinados, postes corridos, etc.

• **Propagación Lateral (Lateral Spreads):** Movimiento extensional de bloques coherentes (roca o suelo) que se deslizan sobre una capa subyacente que ha perdido su resistencia (usualmente por licuefacción sísmica).

7. Partes de un Movimiento en Masa

La morfología de un deslizamiento (especialmente rotacional) tiene partes características:

- Corona (Crown): La superficie intacta por encima del escarpe principal.
- Escarpe Principal (Main Scarp): La superficie vertical o muy empinada expuesta por el desprendimiento inicial. Es la "cicatriz".
- Escarpes Secundarios: Pequeñas cicatrices dentro del cuerpo del deslizamiento.
- Cabeza (Head): La parte superior de la masa desplazada.
- Cuerpo (Body): La masa principal de material que se ha movido. A menudo presenta una morfología caótica o de bloques.
- Flancos (Flanks): Los lados del deslizamiento.
- Superficie de Ruptura (Surface of Rupture): La superficie sobre la cual se ha movido la masa.
- Pie (Toe): El lóbulo o borde más avanzado de la masa deslizada.
- Pata (Foot): El área donde el material se ha acumulado y sobresale de la pendiente original.